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Fundamental Constants in Singularity-Free 
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Expressions for the time dependence of the fundamental constants are derived 
through dimensional reduction and one-loop quantum corrections to scalar 
fields. Moreover, singularity-free solutions of Einstein's field equations are 
obtained. Using these solutions, we discuss the time dependence of fundamental 
constants. It is interesting to see that the fine structure constant asymptotically 
approaches to 1/137, Gee r (effective four-dimensional constant) approaches G N 
(Newtonian gravitational constant), and Ae~r vanishes. Graphical representa- 
tions of these results are also given for a special case. 

1. I N T R O D U C T I O N  

In the context of  the unification of  gravity with other forces of  nature, 
Ka luza -Kle in  theory (Kaluza, 1921; Klein, 1926a,b; Duff  et al., 1986) is 
important.  Though much work has been done on this theory, some results 
in the effective four-dimensional cosmological model (obtained through 
compactification of  extra dimensions) are interesting. In this theory, the 
five-dimensional manifold is a product  of  M 4 (usual four-dimensional 
paracompact  manifold) and a compact  manifold S 1 (circle). Our observ- 
able universe is four-dimensional, so at late times the radius of  the extra 
manifold (S 1) is supposed to be extremely small (undetectable). Hence, it is 
very natural to think that if the extra manifold really existed at very high 
energy scale in the extreme past and is undetectable at late times due to the 
nonavailability of  the energy required to detect it, it should manifest itself 
in some way or other. Employing the heat-kernel method, Toms (1983) 
calculated the one-loop effective action in a five-dimensional background 
geometry and obtained the induced cosmological constant, gravity, and 
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Maxwell's term as manifestation of the fifth dimension of the space. The 
model considered by Toms has a static component of the metric tensor 
corresponding to the extra dimension. Later, Copeland and Toms (1985) 
calculated the time-dependent gravitational as well as cosmological term 
through the one-loop quantum correction to the dimensionally reduced 
action for scalar fields on a higher-dimensional time-dependent Kaluza- 
Klein background. Gleiser and Taylor (1983) also discussed the time 
dependence of the gravitational as well as cosmological constant in a six 
dimensional cosmological background without including the contribution 
of the one-loop correction of scalar or spinor fields. In the context of 
Kaluza-Klein theories, Marciano (1984) also discussed the time depen- 
dence of fundamental constants and suggested that the time variation of 
these constants may provide evidence for the existence of the internal 
manifold. Gilbert et al. (1984) calculated the one-loop effective action for 
scalar fields, and Gilbert and McClain (1984) calculated the same for 
spinors, in time-dependent Kaluza-Klein background. 

As discussed in Section 4 of this paper, fundamental constants (gravi- 
tational constant, cosmological constant, and fine structure constant) 
greatly depend on the scale factor b(t) associated with the internal mani- 
fold. So, b(t) is very crucial to getting natural values (observed values) of 
these constants today. Naturally b(t) is a solution of higher-dimensional 
Einstein field equations. Most of the solutions obtained (corresponding to 
b(t)) suffer from the disease of "crack of doom" singularity. For example, 
in the Chodos-Detweiler (1986) model it occurs at t = ~ .  Matzner and 
Mezzacappa (1986) investigated a five-dimensional model in which this 
problem occurs at some time during the evolution of the model. Solutions 
obtained by Sahadev (1984) also suffer from this disease. As realized in 
Section 4, b(t) should asymptotically stabilize. Copeland and Toms (1984) 
also realized the necessity of this constraint, but they found that the 
solution is unstable near the asymptotic limit of b(t). Actually, Copeland 
and Toms did not solve the (4 + d)-dimensional Einstein equations, but 
solved equations derived from the effective four-dimensional action for 
gravity. Gleiser and Taylor (1983) solved six-dimensional Einstein equa- 
tions (assuming some suitable equations of state for matter) such that their 
solutions satisfy the above criterion. 

Rosenbaum et al. (1987) suggested diagrammatic solutions for a 
five-dimensional Kaluza-Klein cosmological model and showed that by an 
appropriate choice of parameters the "crack of doom" singularity can be 
avoided. Here, solutions of Einstein's equations are obtained which are free 
from the "crack of doom" singularity and the external manifold is also 
singularity-free, i.e., the scale factor associated with the three-dimensional 
subspace of the external manifold is initially nonvanishing and the scale- 
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factor (associated with the internal manifold) asymptotically stabilizes at a 
nonzero constant value. As a result time-dependent fundamental constants 
approach the required numerical values as time increases. 

This paper is organized as follows. Section 2 contains the five-dimen- 
sional model and the action used in the theory. Section 3 discusses the 
dimensional reduction of fields. In Section 4, a one-loop correction for the 
scalar field is discussed and expressions showing a time dependence of 
fundamental constants are derived. In Section 5, the five-dimensional 
Einstein field equations are solved. Section 6 discusses results in the light of  
the solution of Einstein's equations obtained in the preceding section. 

Natural units h = c = 1 are used throughout the paper, where h and c 
have their usual meaning. An overdot denotes d/at (t denotes time). 

2. M O D E L  

We consider a five-dimensional space with coordinates x ~ 
(# = 0, 1, 2, 3) of the ordinary four-dimensional manifold M 4 and coordi- 
nates y on the internal manifold (circle). The line element is written as 

aZ(t) 
ds2 = dt2 (1 + er2[4) [(dxl)2 + (dx2)2 + (dx3)2] 

- b2(t)[dy - kAy(x) dx"] z (2.1) 

where t is the cosmic time, a(t) is the scale factor for the t = const 
hypersurface of M 4, E is the curvature constant (with possible values + 1, 
0, and - 1  corresponding to closed, fiat and open models of  t = const 
hypersurface of M4), r z= (xl)2 +(x2)Z +(x3) 2, A~(x) is the four-dimen- 
sional electromagnetic field, and k is a constant of dimension (mass) -I to 
make kAy(x) dimensionless. 

In the horizontal lift basis (HLB) the metric tensor (Misner et al., 
1973; Huggins and Toms, 1986) given by (2.1) is written as 

( aZ(t) a:(t) a2(t) _b2(t) )  
gm,,,=diag 1, - (1 +er2/4) 2' " (1 +er2/4) z '  (1 +er2/4) 2' 

(2.2) 

Using the HLB, we write the total action of the theory as 

I c!~x (_g~),j~R~+ ~ 
S = 16riG5 

d4x dy ( - g s )  

x [gm"'(Dm, c~)*(D,,cfl) - 8ns4~*~b] + S (') 

where Gs = GL, (G is proportional to aN, the Newtonian gravitational 
constant, which is equal to M~ 2, where Mp is the Planck mass, 0 _< y _< L), 
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R5 is a five-dimensional Ricci scalar, R5 = R4 - �88 ~v (R4 is a four-di- 
mensional Ricci scalar, F.v = DvA. - D.A~, D~ = Vu + kAy, and V. and V5 
are covariant derivatives in curved space), 8 is the coupling constant, 4~ is 
the scalar field, S ~m) is the action for the matter (perfect fluid) other than 
~b, and g5 is the determinant of  the metric tensor gm'n' given by (2.2). 

3. DIMENSIONAL REDUCTION 

3.1. Gravity 

The five-dimensional action for gravity as given in the total action 
(2.3) is 

For the sake of convenience, the metric given by (2.2) is written as 

gMN = _b2(t) 

where 

aZ(t ) a2(t) aZ(t) "] 
gvv -d i ag  1, (l+Er2/4):,  ( l+ErZ/4)2 ,  (l+~r214)Z j 

We conformally transform gMN to gMN as 

where g~v = ba(t)g~v. So, ignoring terms of total divergence and integrating 
over y, one gets 

S(4) I f  1/2b3I k2b-2-- (~)21 g = 167rG d4x ( - g 4 )  /~4 4 F~F uv - 12 (3.4) 

Further, to undo the earlier conformal transformation on g~, another 
conformal transformation is done as 

~ = G2(t)guv (3.5) 

Under (3.5), the action (3.4) is written as 

1 
$ 2 ) = - -  d4x(-g4)l /2b R4---~F~vF uv (3.6) 

16rcG 



Fundamental Constants in 5D Kaluza-Klein Model 113 

3 .2 .  S c a l a r  Fie lds  

The internal manifold is a circle, which is not simply connected, hence 
any field on it can be either untwisted (periodic in y) or twisted (antiperi- 
odic in y). Hence, in either case, one may write (Toms, 1983) 

(o(x~, y )=  [Lb(t)]l/2 ~ c~,(x4)exp[i(n + ~)My] (3.7) 
n= --oo 

where M = 2~/L (L is the circumference of the circle, the internal mani- 
fold) and ~ = 0 (1/2) for the untwisted (twisted) field. 

Substituting q~ given by (3.7) in the action for the scalar field in (2.3) 
and integrating over y, we obtain 

S~4) = 2  . . . .  d4x [ -g4(x ) ]1 /2  #V(D(n)~~ 

- M,~b, ~b n R 4 t~*4n (3.8a) 

where 

and 

D~'~ = Vu~) . + 2q, A,(% (3.8b) 

M 2 = M~ + b---5--- 2 a b 4 \b]  2 dt (3.8c) 

qn = (n + ~) e = (n § a)kM (3.8d) 

Here qn is charge of the scalar field in the n th mode, which is an integral 
(half-integral) multiple of e ( = k M )  for untwisted (twisted) fields. 

4. ONE-LOOP EFFECTIVE ACTION 

The one-loop effective action for 4). is calculated for the nth mode and 
summed up for all modes to get 

i 
In det A~ (4.1) 

where A, is the operator defined as 

A, = ~,~vl)(")D(") + M 2 + d~ l /..2 F Fpv] (4.2) - - 4 . ' ~ - # v - -  ] c, + #  + v  

Using the kernel K+(s, x, x) for A+, we can rewrite (4.1) as 

i ~ f fo~dStrKn(s,x,x) (4.3) . . . .  dax ( -g4 )  -2 
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where 

K,~(s, x, x) = ip4-N( 4rcis)-rr exp(--iM{~)s) ~ (is)~a~(x) 
k = 0  

(N is the space-time dimension used as a dimensional regulator with N --+ 4, 
and # is a constant of  mass dimension to get dimensionless action). For  An 
given by (4.2) (Toms, 1983; Dewitt, 1965, 1975; Gilkey, 1973) 

ao(x) = 1 (4.4a) 
1 ~ b 2 p  /Tpv a 1 ( x )  ~--- (1 _ ~,a)R 4 .~_ 4 . . . .  , v - -  ( 4 . 4 b )  

a2 (x) = -- ~ k2MZ(n + ~) ZFU~F~ +. �9 . (4.4c) 
(only relevant terms are mentioned here). 

Integrating over s in (4.3) and using (4.4), we find 

F~l, = 1 f 2(4=)2 d4x (-g4)112 

F • m - 5  . . . .  b ~ + ~ ( t )  

N-~4 -- 2 . = -~o b2 + MZ(t) -6 -- g R4 

+ l i m { ~ g k 2 ~  N ~. [{n+e)2M2 1 
N-.4 - -2 . = - ~  b~ + ~ ( t )  v 2 - 1  

1 ~ 2  N ~ k2M2(nq_g)2[(n+oO2M2 IN/z-i} 
- -~  - y  . . . .  b ~ ~- ; t~(t)  

x F~F u" + . . .  (4.5) 

where 

) l ' I2 ( t )  = 2 a b 4 - 5 )7  

Using formula (B6) of  Ford (1989), 

[(n +c)Z+d2] -~ ==1/2dl-2~ 2/~-1/2  ,= _~ X] 2 + 4 sin zc2f~(c, d) (4.6) 

(where Re 2 > 1/2 and e and d are real), we can sum the series in (4.5) for 
)l~r2(t) > 0 to yield, when ~ = 0, 

F{~ 1 ) -  2(s  ~ - s 4 ,  [ 15 ' ' ~ r + 3 - M  ( ) +  

k 2 4 z c g b - 3  -t --~ ( ~ a . f  (t) M~)']Fv,,F'*V+ " " ] (4.7, 
+ 24=- J 
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[where ~(p) is the Riemann zeta function] and when 0~ = 1/2 

1 1/2 _ 87tb ~rs l~g)-2(4~)2fd4x(-g4) [ 15M (t) + ~4nbM 3(t)_~-~[1 _ ~)R4 

+'4k2(4rcgb\ 3M ffI3(t) M4-~23))F"vFV~ +" ' "1 (4.8) 

If Ng (No) is the number of untwisted (twisted) scalar fields, we have 

r g  ~) = 

• 

i 4 2(~)2 j d  x ( ~g4~ ~ ~2 

15mff1'(t)(N + +Nff) + ~ ( N g  + No)M3(t) - g  R 4 

--4k2[-4rcgb + ~M2~(3) dN+ 3 + [ 7 - ~  M (t)(No + Nff) + o -- No 

x F~F~V+ "' "} 

From (3.6) and (4.9) we can write the effective action as 

fd4x(-g4)'/z  ~5(t)(Ng + No) ~fr = (60riM 

(4.9) 

k2~ b_b_ 4rcgb ~ 3 + M6~3) ( 3 ) ]  
+ 4 [16r~6 +--3-M- M (t)(No + Nff) + N + - ~ N  o 

x F,,.F,~V+ .. .} (4.10) 

meff 
8nGefr - 6 b M  ffIS(t)(N+ + No) (4.12) 

Thus, one finds that Gen~ and Aefr are time dependent, but to have a clear 
picture one needs the function b(t) explicitly. Here b(t) is the solution of 

and 

According 
constant are given by 

167rGefr - 16rcG + 2--4~M (N+ + N~ - ~  (4.11) 

to (4.10), the effective gravitational constant and cosmological 
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five-dimensional Einstein equations. Moreover, using the normalization 
condition for A,, one gets from (4.10) 

b( t) 4rc~b(t) M2~(3) 
/Q3,t--N+ + Nd- - 2 No = (4.13) 16rtG + ~ ~, )( o + No) 67z2 7 

It is interesting to see from (4.13) that e (the gauge coupling constant 
for the electromagnetic field) is time dependent. Also one gets the time 
dependence of the fine structure constant as 

4~ e2 - M24~ [_16rrG [- b(t) + 4~Nb(t)3~ 21~3(t)(Ng + Nff) + ~ Ng - ~ No 

(4.14) 

It is clear from (4.11) and (4.12) that if l i m t ~  b(t)= O, Ge~-+oe as 
t ~ oo, and also A~fr becomes indeterminate. To avoid these kinds of 
unphysical situations, one needs b(t) --.f  (const) > 0 as t --, oo. 

5. COSMOLOGICAL SOLUTION OF EINSTEIN'S FIELD 
EQUATIONS 

On varying the action (2.3) with respect to the metric tensor, one gets 
the Einstein field equations 

- -  T (F) + T~m~, (5.1) am,n' = Rm'n ' ~ gm'n' :87cG Z~,)n, q- l ~ G  -m, n, 

where Gin,n, is the Einstein tensor, T~)~, is the energy momentum tensor for 
4) given as 

Z ~  ), = (Din, 49) *(On' 4 9) -- ~ gm'n' [g r's'(Dr' 49) *(Os' 49) 

-- gR~49"49 -- M249"49] (5.2) 

T~,  ), is the energy-momentum tensor for matter (perfect fluid), and --,,'nT~F)' is 
the energy-momentum tensor for the gauge field A given as 

1 
T(mF, ) __ r '~ F r'~' (5.3a) -- Fm'rFn' -- a g""'rr's' 

Requiring that A, lives on M 4 only, due to the homogeneity of M 3 
(three-dimensional subspace of M4), one can write Maxwell's fields Fmw as 

f Em,et, (_ga) l /sF( t )  for m ' = # ,  n ' = v  Fm'n' = (5.3b) 

0 otherwise 
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where E "'n' is the Levi-Civita tensor. Using (5,3b) in (5.3a), we obtain 

T~F2, = gg,,,,,,, F2( t) (5.3c) 

where 

- 1  for m ' = # ,  
= 0 otherwise 

Maxwell's fields F,,,,,,, satisfy the equation 

which yields 

X I : V  

1 
Ore,((--gs) l/ZF"") = 0 ( - - g s )  

1]2 

A 
F(t)  - 

b(t) 
(5.4) 

and indices ~b, m over the variables correspond to scalar field and matter, 
respectively. Due to the spatial homogeneity of the model, p, p, and P are 
only time dependent. From (5.5) one gets 

To o = p, T~ = p  (i = 1, 2, 3) (5.7) 

and 

T 4 = p  

The conservation of  total energy-momentum tensor 

T~g,",F) = T ~ 7  ) + T~'~ ), 

yields 
, 

t S + p  - ~ - + ~  + 3 P a + p  ~ -  [F2( t ) ]=0 (5.8) 

for m ,  = 0 , 1 , 2 , 3  
6 =  for m ,  = 4  ' n' (5.6a) 

6 , = S 0  for m', n ' =  0, 1, 2, 3 
(5.6b) 

for m', n' = 4 

using (5.3b). 
Now, with the total energy density p = p(~) + p(-O the pressure on the 

three-dimensional spatial subspace of the external manifold p =p(~).+p(m), 
and the pressure on the internal manifold p =p(4, )+p(m) the energy- 
momentum tensor is written as (Gleiser and Taylor, 1983) 

T ~ 7  ~ = (p + p)Um, Un,-  (6p + 6'P)g,,,,,, (5.5) 

where Urn'= (1, 0, 0, 0, 0) is the velocity vector normalized to unity, 
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Now the Einstein field equations are written as 

6k3t2 + ( ~  b'X~ 2 oo=  
= 8nGtZ[p(m) + p(~) _ F2(t)] (5.9a) 

a212 +dt'k, a J + a  + ~ ) = 8 ~ G t 2 (  p F~) (5.9b) 

"~t-- ~'-~ ) "~ "-~ "{- -~ ) "~" 2 II 4F2\ 8 r c G t p ~ P - T )  (5.9c) 

where 7= t/tp and prime denotes O/0Y. 
At the end of Section 4, the required nature for the solution b(t) has 

been discussed. To have such a solution, it is assumed that 

1 
b 2 = f 2  + _ _  (5.10) a2(t) 

Equation (5.10) satisfies the criterion limt~ ~ b(t) = f  
Using (5.10) and (5.9b) and (5.9c), one gets 

2k3 t2 2f2a '2 _ 8rcGt2F p + ( l + j2a2)p 5+4f2a2-27 
a21 ~ + 1 + Jaa~ L ~ 1~ J (5.11) 

In order to solve (5.11), one needs an equation relating p, P, and F2(t). 
no such relation is available. Nevertheless, one may impose the But 

condition 

p(r +p(m) + ( 1 +f2a2)[P(~) + P(")] 5 + 4fZa 2 F2 (5.12) 
3 

In (5.12), p(~) and P(~) can be calculated from (5.2) and (5.3), and F2(t) is 
given by (5.4). But p(") and p(m) are still arbitrary. Condition (5.12) may 
be accepted provided that it is satisfactory from the physical point of view. 
From (5.12), obviously p(') and P(") have time dependence only (due to 
the spatial homogeneity of the model) and p(O), P(~), F(t), and a(t) have 
time dependence only. 

Utilizing condition (5.12), we can exactly integrate (5.11) to 

1 +j~a 2 = + ~ (5.13) 

provided that k 3 - - - 1 .  If k3 = +1, (5.12) yields a complex solution. 
The solution is constant if k3 = 0. So only k3 = -  1 is considered here- 
after. 
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Solutions (5.10) and (5.13) can be accepted if they satisfy (5.%). From 
the conservation equations one gets 

~ G O = 0 =  ~ Ot ~ T~ (5.14) 

in the model considered here. Equation (5.14) implies that if the constraint 
equation (5.9a) is satisfied at one particular epoch, it is satisfied by the 
above solutions at every epoch. So, one can choose a particular epoch 
t = 0 .  

We integrated (5.8) to 

1 for( ! /; ~t ) p = po ~ 317 + P -~ - F 2 a3b dt '  (5.1 5) 

Now (5.9a) is satisfied at t = 0 by solutions (5.10) and (5.13) provided 

--6t2f2(~ 2 -  1) ~_f2(3c~2+ 132t 2 3~2f2t 2 f2(~2_ 1)t~ 
l 2 120r 2 l 2 0~212 

[ A2((r 2 --  1)3.3 
= 8rcGt2LPO(~2 --  1) 2 f2~2 

which yields 

~2 _ 1 7f2t2/12 + [(49f4/14)t4 + ( 5 2 f 2 t 2 / 1 2 ) ( 8 g G t ~ p ~  - 6f2t2/12)] 1/2 

"" 2( 8 ~ G t 2  p ~ _ 6 f2 t2  /12 ) (5.16) 

Po is the energy density at t = 0, and is expected to be quite large. 
So the value of ~2 given by (5.16) is reasonable. Thus it is found that 
a(t)  given by the solution (5.13) is nonsingular, provided that P0 is 
finite. 

6. CONCLUDING REMARKS 

In this section, results given by equations (4.11), (4.12), and (4.14) are 
interpreted in the light of solutions of the five-dimensional Einstein equa- 
tions obtained in the preceding section. These solutions are 

and 

1/2 
b(t)  = f ( f i  + o~)[(~ + ~)2_  1]-  

(6.1) 

(6.2) 
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Now, equations (4.11), (4.12), and (4.14) are rewritten as 

1 f ( f t / l  + ~ 5(N~- + No)~13(t ) f ( f t / l  + ~) 
16rtG~er 16rtG[(ft/l + ~2 _ 111/2 576rtM[ft/l + ~)2 _ 1]~/2 (6.3) 

A~er f ( f t / l  + ~)ffIS(t)(N~ + No)  
8rtGeer 60=M[(ft/l  + ~2  1]~/2 

and 

(6.4) 

e 2 M 2 F f ( f t l l  + (~) 4 ~ g f ( f t l l  + (0 
4~ = 4rt L 16rta[(ftll + ~)2 _ 1],/2 + 3M[(f t / l  + ~2 _ 11!/2 

M20(3) N + - ~ No (6.5) • M3(t)(Nd- + No) -t 6rc2 

3~r(t) in (6.3)-(6.5) is given by 

a~rz(t ) 6(1 - f e ) ( f t / l  + ~)2 + 2ja _ 1 (6.6) 
- 4jal2(ft/l + ~)2[(ft/l + ~)2 _ 112 

As t --+ 0% from equation (6.3) one gets 

Geer = G/ f  (6.7) 

The present value of the gravitational constant is GN (Newtonian gravita- 
tional constant) so lim,~ ~ Geer = GN; hence, 

G =fGN (6.8) 

It is also known that the fine structure constant at low energy is 1/137. 
Hence one gets from equations (6.5) and (6.8) 

4~z [16n@N ~ (  3 )1  137~-~- 5 + No - ~ N o  

which provides a compactification mass scale as 

M =  137 - - - 5 7 -  ~ N f f - ~ N o  (6.9) 

Equation (6.4) implies that 

lim meff = 0 (6.10) 
t ~ 0 0  

Also, for large t, the effective radius of the circle b(t)~ (~ is the physical 
radius of the circle) is approximately equal to ftT. So 

f~ < Lp (Planck length) (6.11) 

because the extra dimension is not observed. 
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Now, from equations (6.9) and (6.11) 

I 

f < 2[ 137 - [2~(3)/3~](Nd- - 3No)] ~/2 (6.12) 

It is noted from (6.12) that the entire analysis is valid so long as 
Nd- 3 _ - s N 0  < 536. 

To get a better feeling for the results we discuss the special case for 
which N J - -  ~No = 536. In this case, one gets from (6.12) that 

f ~  1 and M - Mp (6.13) 

Using (6.13) and (6.6), we obtain 

1 
~Q(t) ~- (6.14) 

2l(ft/l + ~)[(ft/l + ~2 _ 11 

Connecting (6.14) and (6.3), we find 

1] 
x{36M313(f--tl+~)[(f~+(~)2--11--5(N~+Nff)} -' (6.15) 

Aeff= 3(Nff + No){12(ff + ~ ) 4 [ ( ~  _]_ ~)2 114 

x[36M313(f--tl +~)(f--t[ +~)2 - -1] -S (N++No)]} - I  (6.16) 

and 

e2 f (ft/l + s 
4-~= t136"72-~ 4[(ft/l+~)2_ 1],/2 

67z2(N~ + No) t -j 
+ 3M313(ft/l + s + 6) 2 _ 117/2. (6.17) 

The quantity Po, which is the density of  the universe at t = 0, is 
supposed to be extremely large, but it is not exactly known. So, for a 
computer plot of the results, P0 is assumed to be ~ 1082 GeV 4. Using this 
assumption, from (5.16) we obtain 

62 - 1 ~ 5.09 x 10 -23 (6.18) 

Also we assume that N0 ~ = 536 and N O --0. In this case, as obtained 
above, f--- 1. With these assumptions we plot graphs for a(t), b(t), Ge~, Aeer, 
and e2/4z. Figure 1 is a graph of a(T) versus ~, which shows a sharp increase 
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I 2 3 4 5 6 

Fig. 1 

7 8 

x 

2 4 6 8 lO (2 14 ~6 18 

~-• 1022 

Fig. 2 

of a(t'). Figure 2 is a graph of  b(t~/(2 • 109) versus t 'x  1022, which shows 
that i n t h e  beginning b(t) is very large followed by a sharp fall, with 
stability of b(t) around 1 near t = 56,8tv (tp is the Planck time). In Fig. 3, 
Gerf is plotted against T, showing that at t = 0, Ge~ is zero. It sharply 
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increases and is stabilized around GN (which is equal to 10 -38 GeV-2). 
Figure 4 is a plot of  Aefr/(2 x 1054) against 2 x 1024~. This graph shows that 
at t = 0 ,  Ae~---10S6GeV 2 and around 7 = 7 . 4  • 10 -23, Aefr~"0. In Fig. 5, 
(e2/4rr) • 10 4 is plotted against t" x 104, which shows that in a very short 
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Fig. 5 

time 1.15 x 10-3tp, the fine structure constant approaches the observed 
value 1/137. Thus, according to the discussion given above, one finds that 
within the Planck time, the fundamental constants acquire the observed 
values. 
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